Abstract: Not all probability ascriptions that appear in scientific theories describe chances. There is a question about whether probability ascriptions in non-fundamental sciences, such as those found in evolutionary biology and statistical mechanics, describe chances in deterministic worlds and about whether there could be any chances in deterministic worlds. Recent debate over whether chance is compatible with determinism has unearthed two strategies for arguing about whether a probability ascription describes chance—that is, to speak metaphorically, two different strategies for figuring out where the chances are: find the chances by focusing on chance’s explanatory role or find the chances by focusing on chance’s predictive role. These two strategies tend to yield conflicting results about where the chances are, and debate over which strategy is appropriate tends to end in stalemate. After discussing these two strategies, I consider a new view of chance’s explanatory role. I argue that one theoretical advantage of this new view is that allows us to make progress on the question of where the chances are by providing a principled way of determining which probability ascriptions describe chances. From the vantage of this new view, the correct application of both strategies involves figuring out where the chances are by figuring out where the probabilistic scientific explanations are and what those explanations are like.
0. Introduction

According to our commonsense theory of coin flips, a U.S. quarter’s probability of landing heads after a decent flip is roughly 50%. To the extent that we believe commonsense, should we also believe that coin flips are genuinely chance processes? It might seem obvious that the answer is no. After all, our commonsense theory of coin flips is compatible with its being true that the world is diachronically deterministic, i.e., that the complete state of the world at a time and the laws of nature determine what the world is like at any other time. Since it seems that there cannot be chance processes in deterministic worlds, our commonsense theory of coin flips is either false or its probabilistic content is not about chances.

However, philosophers disagree about whether there can be chance processes in deterministic worlds. Compatibilists, i.e., philosophers who argue that there can be non-extremal chances in even fundamentally deterministic worlds, tend to argue from premises about chance’s explanatory role. For example, some compatibilists point out that there can be probabilistic explanations in deterministic worlds (such as probabilistic explanations drawn from evolutionary biology and statistical mechanics) and they argue that if a probability ascription is explanatory then it describes a chance.¹ Incompatibilists, i.e., philosophers who argue that chance and determinism are incompatible, tend to argue from premises about chance’s predictive role. For example, some incompatibilists point out that a deterministic world in which there are (non-extremal) chances would be a world in which the laws of nature and present state of the world are better evidence about the future than are the present chances. However, on widely accepted accounts of chance’s predictive role (especially the account found in Lewis 1980), of all the

¹ For recent examples of this kind of argument for compatibilism, see Loewer 2001, Glynn 2010, and Emery 2013.
evidence we might presently have about whether some outcome will occur in the future, no
evidence can be better than is the outcome’s present chance of occurring (at least so long as we
set aside fanciful possibilities, such as that a magical crystal ball might foretell the outcome of a
chance process). Since there are no worlds in which the laws of nature and present state of the
world are better evidence about the future than are the chances, chance’s predictive role seems to
motivate incompatibilism.²

Perhaps you think that our world is indeterministic, and so are not inclined to care too
much about whether chance and determinism are compatible. However, the question of whether
chance and determinism are compatible is just a special instance of the more general question of
whether there could be macrophysical chances in a world that are not simply the result of
microphysical chance processes percolating up into macroscopic phenomena via supervenience
relations. For example, if coin flips are processes that supervene on the quantum world then
quantum mechanics might suggest that coin flips really are chance processes; but quantum
mechanics will not vindicate the claim that a flipped coin has a 50% chance of landing heads.
Could it nevertheless be true that a flipped coin has a 50% chance of landing heads?

Here again chance’s explanatory role seems to motivate a different answer than does
chance’s predictive role. On the one hand, because it seems there could be good explanations
found in autonomous probabilistic macrophysical sciences, it seems there could be autonomous
macrophysical chances. On the other hand, it seems that there could not be autonomous
macrophysical chances since the best evidence about the future is always found in microphysical,
rather than macrophysical, sciences.

² For recent examples of this kind of argument for incompatibilism, see Hoefer 2007 and Sober
2010 (wherein the argument is described) and Schaffer 2007 (wherein the argument is endorsed).
To put the matter metaphorically, we seem to have two different strategies for figuring out where the chances are. The first strategy is to locate the chances in a given world by locating the probabilistic explanations of that world. For example, to the extent that quantum physics underwrites probabilistic explanations of various phenomena in our world, it seems that the probability ascriptions underwritten by quantum physics also describe chances that obtain in our world. Similarly, one might argue that if there are good probabilistic explanations in a deterministic world, then there are chances in that world described by those good probabilistic explanations. Or, one might argue that if there are good probabilistic explanations in autonomous macrophysical theories of a world, then there are chances to be found among the macroscopic processes of that world that are independent of whatever chances might also be at work in the microscopic processes of that world.

The second strategy is to locate the chances in a given world by locating the best grounds for our expectations about the future in that world. One might argue that if our best grounds for our expectations about the future of a world do not involve any chances, then there are no chances in that world. Or, one might argue that if our best grounds for forming expectations about the future of a world always involve the chances that feature in the microscopic processes of that world rather than in macroscopic processes, then there are no independent chance processes at work in the macroscopic processes of that world.

In theory, we could make progress toward figuring out where the chances are (e.g., figuring out whether incompatibilism or compatibilism is true) by evaluating each of these two strategies. In practice, however, arguments for or against each strategy—or, more commonly, for or against a particular version of each strategy—often seem to presuppose an answer to the question of where the chances are.
In this essay, I offer a way forward. I begin by reviewing arguments concerning the explanation strategy (in section 1) and arguments concerning the grounds-for-expectation strategy (in section 2). Then (in section 3), I present my own view of chance’s explanatory role; roughly, information about chances serves to explain the occurrence of events, while information about laws and antecedent conditions serves to explain those chances. I argue that an advantage of this view is that it can be used to vindicate (a version of) the explanatory strategy and that it reduces questions about the merits of the grounds-for-expectation strategy to questions about the nature of scientific explanation—all without making any question begging assumptions about where the chances are. In so doing, my view lights the way toward progress on abstract metaphysical questions about where the chances are—such as whether there can be chances in deterministic worlds or whether there can be (autonomous) chances at work in macrophysical processes—by reducing those questions to (what I take to be) more tractable questions about the explanatory power of scientific theories.

1. Explanation as a Guide to Where the Chances Are

While quantum mechanics is the scientific theory most famous for underwriting probability ascriptions, there are a great many probabilistic theories in non-fundamental sciences as well. For example, (non-equilibrium) statistical thermodynamics tells us that the probability that our ice cubes will melt when left unmolested in our water glass is high but less than 1, evolutionary biology tells us that the probability that a very fit organism will pass on no copies of its genes to the next generation is low but greater than 0, and medical science tells us that the probability of developing paresis after suffering years of untreated syphilis is about 30%.
Chances are formally modeled by probability functions, but so too are many aspects of the world that are not chances. For example, epistemologists sometimes model the doxastic attitudes of agents as probabilities, e.g., my confidence that it will rain this evening is 80%. However, facts about what doxastic attitudes agents happen to have imply nothing about the chances; my being 80% confident that it will rain is consistent with there being any chance of rain whatsoever (including 0 and 1). Or, notice that the frequency with which an event occurs relative to some class of occurrences is also modeled as a probability: for example, it might be that among days like today, 80% were days that it rained. However, that the relative frequencies with which various types of events occur fall between 0 and 1 does not imply that there are any chances with values between 0 and 1; that the frequency of rain is 80%, for example, is consistent with each particular day’s chance of rain being either 0 or 1. The moral is that a commitment to a theory that contains probability functions that assign non-extremal values to various propositions does not automatically commit one to there being any non-extremal chances.

How can we tell whether the probabilities that appear in a particular theory are about chances rather than, say, about degrees of confidence or relative frequencies? Let us start by noticing that probability ascriptions that are about the degrees of confidence agents happen to have or that are about the relative frequencies of events play no role in explaining the propositions to which they are ascribed. For example, that I happen to be 80% confident that it will rain in no way helps to explain why it rains if it does. Similarly, the fact that the frequency of rain on days like today has been 80% does not explain why it rains on this particular occasion (though the relative frequency of rain might be evidence of the truth of some further propositions that ultimately explain why it rains).
However, it seems that (at least) some probability ascriptions are (in some way) explanatory. The standard interpretation of quantum mechanics, for example, underwrites theories of radioactivity according to which the probability that a radium-226 atom will decay within 1600 years is roughly 50%. That probability ascription seems to help to explain why it is that roughly half of a sample of radium-226 decays after 1600 years.

Note that the probabilities underwritten by quantum mechanics are, in addition to being explanatory, our paradigm example of probability ascriptions that model chance. Indeed, the explanatory success of quantum physics is (arguably) among our best reasons for thinking that there really are chance processes in our world. After all, though one can see how probabilities underwritten by quantum mechanics might help to predict or help to describe various phenomena without modeling chance, it is much harder to see how those probabilities can explain without modeling chance. The probabilities associated with radioactive decay, for example, might help to predict or to describe how much radioactive material decays within a certain time even if radioactive decay is not a genuine chance process—but how could those probabilities explain why radioactive material decays without also accurately describing genuine chance processes at work during decay events?

The alleged connection between explanation and chance that is apparently exemplified by fundamental physics has also been used to motivate the compatibility of determinism and chance. For example, Luke Glynn writes,

As regards explanation, there may be more than one good explanation of an event. If a resulting pea plant turns out to be homozygous, then a good explanation would be that … the Mendelian laws indicate that there was a 0.25 chance that this
outcome would result. That is true even though a still more satisfying explanation might be that … the microphysical laws and circumstances entailed a chance 1 for this outcome.

(Glynn, pg. 71)

In a similar spirit, Nina Emery considers the following sentences, which she numbers (8), (9), and (10):

(8) It is very likely, though not certain, that any ice cube in the experiment will melt.
(9) Most of the ice cubes in the experiment have melted.
(10) Every ice-cube-and-glass system observed so far started off in a normal micro-state (a state that leads deterministically to the ice melting within an hour).

Emery endorses “the explanatory condition” according to which (8) is about chance values (in part) because (8) is an explanation of (9). In clarifying the content of the explanatory condition, Emery writes,

The recent literature on explanation contains a number of arguments for the conclusion that (8) is a better explanation of (9) than (10) is, but notice that the explanatory criterion as stated above does not require any such argument. The criterion does not require that (8) must be the best explanation of (9), only that (8) be an explanation of (9), and there is good reason to think that these are two distinct conditions.

(Emery, pg. 116)
Moved by arguments such as those given by Glynn and Emery, one might initially be drawn to something along the lines of the following test of whether a probability ascription models chance, which I call “Good Explanation Test”.

Good Explanation Test: If a sentence of the form, “the probability of [event] o is equal to [real number] n” is a non-eliminable part of a good explanation of o’s occurrence, then the sentence is true and the probability ascription is about o’s chance of occurring.

Peter Railton (1978) introduced the useful notion of an “ideal explanatory text”. An ideal explanatory text contains all information relevant to explaining the phenomena in question. Explanations that fail to live up to this extremely high standard by containing less information can nevertheless be (merely) good explanations. For example, an ideal explanation of why my car crashed might specify my car’s exact velocity moments before the crash, while a merely good explanation of why my car crashed might simply note that I was speeding. Good Explanation Test makes predictions about probability ascriptions that are non-eliminable parts of explanations of either type. In other words, Good Explanation Test says that appearing in a good explanation is good enough to qualify a probability ascription as being about o’s chance of occurring even if that probability ascription does not appear in an ideal explanation of o’s occurrence.

Notice that Good Explanation Test makes predictions about probability ascriptions that do not explain anything on their own, so long as they are non-eliminable parts of a good

3 The question of what kind of information goes into an ideal explanatory text is just the question of what is the correct theory of scientific explanation.
explanation. The caveat “non-eliminable” is meant to prevent Good Explanation Test from (non-trivially) applying to probability ascriptions that, in some intuitive sense, do no explanatory work in the good explanations in which they appear. Roughly, if the quality of an explanation does not depend on its probabilistic content, then that probabilistic content is eliminable.

Good Explanation Test agrees with the verdict that the probabilities underwritten by quantum mechanics model chance (on the assumption that these probability ascriptions are non-eliminable parts of good explanations). Furthermore, Good Explanation Test opens the door to the possibility that there are chances in deterministic worlds by reducing the question of whether there could be non-extremal chances in a deterministic world to the question of whether non-extremal probability ascriptions could be non-eliminable parts of good explanations in deterministic worlds. In so doing, Good Explanation Test allows one to argue that a particular probability ascription models chance while admitting that, in a deterministic world, the very best explanations will never have any non-eliminable probabilistic content.

Were Good Explanation Test true, incompatibilism about chance and determinism would, I think, be an unattractive position. It is one thing to deny that there are any probability ascriptions that are non-eliminable parts of ideal explanatory texts in deterministic worlds, but quite another to deny that there are any probability ascriptions in deterministic worlds that play an important role in merely good explanations. Evolutionary biologists, for example, seem to make use of probabilities when they explain the frequency of a given trait among a population (in part) by arguing that the trait contributes to an organism’s overall fitness; the explanatory story seems to be that fitter organisms have a greater probability of being selected for as parents and traits that contribute to fitness are more likely to be passed on to subsequent generations. So, evolutionary biology seems to give us good probabilistic explanations whether or not the world
is fundamentally deterministic. Or, for another example, the wide acceptance of statistical mechanics in the 19th century is typically attributed to the explanatory power of its probabilistic content despite the presupposition that statistical mechanics is consistent with determinism. (See, for example, Strevens 2000.) Once the compatibilist has admitted that probability ascriptions do not appear in the ideal explanations of deterministic worlds, it seems positively ungenerous to insist that, e.g., the probabilities of evolutionary biology and of statistical mechanics are not even non-eliminable parts of merely good explanations in some deterministic worlds.

The problem for the compatibilist, however, is that Good Explanation Test is not very plausible because there are many accounts of how a probability ascription could be a non-eliminable part of a merely good explanation without thereby being true and about chance. Philip Kitcher (1989), for example, argues that probability ascriptions of 1 or 0 that are either false or not about chances might nevertheless be explanatory in virtue of being about idealizations of indeterministic phenomena. Following Kitcher, it is similarly available to argue that probability ascriptions between 1 and 0 that are either false or not about chance might nevertheless be explanatory in virtue of being about idealizations of deterministic phenomena.

Another option is Railton’s view that probability ascriptions that are either false or not about chance can nevertheless be explanatory by being evidence about the content of an ideal explanation. Or, we might follow Jonathan Schaffer (2007), who argues that a probability ascription that is not about chance can nevertheless be explanatory by being a “probability of explanation”, which is “merely an ignorance measure over various nonchancy explanatory paths” rather than a “probabilistic explanation” in which chances play an explanatory role. (Schaffer, pg. 119)
However, that Good Explanation Test is false does not imply that there is no important connection between being explanatory and being about chance. Both Railton 1978 and Schaffer 2007 (implicitly) endorse a more stringent explanation-based test of when a probability ascription is true and models chance, which I call “Ideal Explanation Test”.

Ideal Explanation Test: If a sentence of the form “the probability of [event] o is equal to [real number] n” is a non-eliminable part of an ideal explanation of o’s occurrence, then the sentence is true and the probability ascription is about o’s chance of occurring.

Notice that Ideal Explanation Test does not imply that there can be only one ideal explanation of a particular phenomenon, but that Ideal Explanation Test does raise the bar on which probability ascriptions are true and model chance. While Ideal Explanation Test, like Good Explanation Test, seems to vindicate the objectivity of probabilities underwritten by quantum mechanics, it is much less obvious that Ideal Explanation Test vindicates the objectivity of any non-fundamental probabilistic ascriptions. It is not so widely accepted that the probabilities of non-fundamental sciences are non-eliminable parts of the ideal explanatory text for events that occur in deterministic worlds.

Still, while the compatibilist loses rhetorical ground in the retreat from Good Explanation Test to Ideal Explanation Test, not all hope is lost. As Emery points out in the quoted passage above, it may be that some probability ascriptions that appear in non-fundamental physical sciences are indeed non-eliminable parts of ideal explanations in deterministic worlds.

To shore up the case for incompatibilism, then, incompatibilists such as Schaffer advocate for an additional strategy for determining which probability ascriptions model chance,
and this additional strategy seems to favor the conclusion that there cannot be any chance processes in deterministic worlds. This incompatibilist-friendly strategy shifts focus away from chance’s explanatory role and onto chance’s predictive role. According to this strategy, we should figure out where the chances are by figuring out what are our best grounds for our expectations about the future.

2. Prediction as a Guide to Where the Chances Are

A widely accepted feature of chance’s predictive role is that, of all the grounds we might presently have for our opinions about whether some outcome will occur in the future, none is better than the outcome’s present chance of occurring. For example, I can have no better grounds for my expectations about whether an atom of radium-226 will decay in the next 1600 years than the atom’s present chance of decay. Of course, after the decay occurs I might have access to all sorts of information that is better evidence about whether the decay occurs than is the decay’s present chance of occurring, such as a record of the decay or information about the decay’s effects. Furthermore, perhaps it is possible to have fantastical kinds of evidence about whether an atom will decay before it does that is even better grounds for my expectations than is the atom’s chance of decay, such as a magical crystal ball’s prediction. However, if we restrict our attention to presently available and non-fantastical kinds of evidence about future, it seems that an event’s present chance of occurring is as good as it gets.

That we have no better evidence about the future than the present chances of future events suggests a second kind of test for whether a probability ascription models chance. The

4 Well-known discussions of chance’s unique predictive role appear in, e.g., Butler 1736, Salmon 1967, and Lewis 1980.
conjunction of the natural laws and present state of the world is also evidence about what the future will be like—but not better evidence than the present chances of various futures. So, one might argue that if the natural laws combine with the present state of the world to be better evidence about whether an event occurs in the future than is that event’s present probability of occurring, that event’s present probability of occurring must not accurately describe the event’s present chance of occurring. In other words, the following test of whether a probability ascription models chance seems to be suggested by chance’s predictive role:

Laws and Present Conditions Test: If a statement of the natural laws and a description of the present state of the world is better grounds for our expectation that event o occurs than is a sentence of the form, “the present probability of [event] o is equal to [real number] n” then either the sentence is false or the sentence is not about chance.

Laws and Present Conditions Test would, were it true, make a strong case for the incompatibilist. In a deterministic world, the laws and present state of the world determine the state of the world at any other time. It seems, then, that any non-extremal probability ascription about an event’s occurrence is worse grounds for our expectations about the future than are the natural laws combined with the present state of the world. Or, to put the point another way, it seems that if you were already certain of the natural laws and of the present state of the world (and had the computational power required use those facts to make predictions), then no probability ascriptions would improve your ability to accurately predict the future in a deterministic world. If instead, however, you start by being certain of the present (non-extremal) probability of a future occurrence, then your ability to accurately predict the future will always
be improved by learning the laws and the present state of any deterministic world. So, it seems that—given Laws and Present Conditions Test—the only probability ascriptions that are both true and model chance take values of either 0 or 1 in deterministic worlds.

While Laws and Conditions Test is not explicitly discussed in the literature, it is implicit in various arguments that chance and determinism are compatible. Some versions of these arguments are quite old (e.g., Laplace 1814), but interest in David Lewis’s more recent “Principal Principle” (Lewis 1980) has given rise to contemporary discussions in which Laws and Conditions Test is implicit.

The Principal Principle (henceforth, PP) implies that if a rational agent (i.e., an agent whose opinions come from a reasonable initial credence function by conditionalizing on her total evidence) is certain that an event’s chance of occurring is n, then her credence (i.e., her degree of expectation) in that event is equal to n, provided that she has only “admissible” evidence.

The content of the PP depends on what information is admissible. If nothing is admissible, the PP is trivial. If everything is admissible, the PP is false—my rational credence that an outcome occurs need not equal what I am certain is that outcome’s chance if I also have the information that the outcome occurred. Lewis himself offered no analysis of admissibility, but he hypothesized that information about the present (and past) state of the world and information about the laws is (at least typically) admissible. After all, suppose that you are certain that an atom of radium-226’s present chance of decaying in the next 1600 years is 50%. What should be your credence that the atom decays after 1600 years? No matter what you know about the laws of nature or about the present state of the world (continuing to ignore fantastical cases involving, e.g., crystal balls) it seems that your confidence that the atom decays within
1600 years should also be 50%. So, it seems that the PP is true when the laws of nature and the present state of the world are taken to be admissible.

The PP combined with the idea that the laws of nature and present state of the world are admissible inspires an argument for incompatibilism that is similar in spirit to the argument for incompatibilism that goes by way of Laws and Conditions Test. The main difference between the two is that the PP-based argument takes a detour through claims about the requirements of rationality. If a rational agent is certain of the laws and present state of a deterministic world, then her credence in every future outcome is either 0 or 1 (assuming that the laws and present state of the world imply a description of everything that happens in the future and assuming that a rational agent’s credences satisfy the standard axioms of probability). The PP implies that a rational agent sets her credences equal to what she is certain are the chances, so long as she has only admissible information. So, assuming that the laws of nature and present state of the world are admissible, the present chance of every outcome must also be 0 or 1; otherwise, there could be, in contradiction to the PP, a case in which a rational agent has only admissible information, is certain that the chance of an outcome is extremal (i.e., is between 0 and 1), and yet has a non-extremal credence in that outcome (i.e., a credence of either 0 or 1).

Of course, a crucial assumption in the PP-based argument for incompatibilism is that the laws of nature and a complete description of the present (or past) state of the world at a time is admissible. If that assumption is denied, then the above argument is no good. Barry Loewer (2001) and Luke Glynn (2010) both offer formulations the Principal Principle on which what is admissible is relativized to a “level”. The rough idea is that information about the microphysical state of the world or about the microphysical laws is inadmissible when assessing certain probability ascriptions (such as those that appear in non-fundamental physical theories) but
information about the present macrophysical state of the world or about the present macrophysical laws is admissible (provided that it is about the appropriate “level”).

The idea that admissible information is at least sometimes restricted to information about the macrophysical present or about the macrophysical laws motivates a more compatibilist-friendly test of whether a probability ascription models chance, which I call “Macrophysical Laws and Macrophysical Conditions Test”, or “Macrophysical Test” for short:

Macrophysical Laws and Macrophysical Conditions Test: If the content of the macrophysical natural laws and a macrophysical description of the present state of the world is better grounds for our expectation that event \(o \) occurs than is a sentence of the form, “the present probability of [event] \(o \) is equal to [real number] \(n \)”, then either the sentence is false or the sentence is not about chance.

Macrophysical Test lets the compatibilist square chance’s predictive role with compatibilism. That the world is deterministic, she argues, is consistent with there being probabilistic macrophysical laws. These probabilistic macrophysical laws combine with the macrophysical conditions of the world to determine the (non-extremal) macrophysical chances—despite there being more fundamental deterministic laws. In turn, these macrophysical chances play an important predictive role; the macrophysical chances are the best macrophysical

\[^{5} \text{Carl Hoefer (2007) denies that the conjunction of the laws and history of the world is admissible in a deterministic world on the grounds that that conjunction implies the truth of every proposition about the future and thus contains information that does not “go by way of” the chances. Perhaps that is right, but without some independent account of which information, in fact, “goes by way of” the chances, Hoefer’s rejection of the PP-based argument for compatibilism— unlike Loewer’s and Glynn’s— does not motivate an alternative prediction-based test of which probability ascriptions model chance.} \]
evidence we have about what the future will like, though information about the microphysical features of the world may be even better evidence about what the future will be like. On this picture, information about the microphysical features of the world is like information about the record of a chance event or about the predictions of a reliable crystal ball; all such evidence about an event’s occurrence might be better evidence than is the outcome’s chance of occurring, but that such evidence is possible to obtain is simply irrelevant to the question of where the chances are.

From the point of view of the incompatibilist, however, Macrophysical Test seems ad hoc—motivated only by the very premise that the incompatibilist denies. Once we have retreated from Laws and Conditions Test to Macrophysical Test, what non-arbitrary reason can be given to not keep going? If we sufficiently restrict the kinds of evidence that a probability ascription must be as good as if it is to be true and about chance, i.e., if we sufficiently restrict what counts as admissible information, then we can argue that any old probability ascription models chance. (Schaffer 2007, for examples, raises this kind of challenge to Loewer 2001.)

On the other hand, Laws and Conditions Test restricts what counts as admissible information to information about the present and past but not information about the future. What non-arbitrary justification is there for counting the present and past as admissible but not the future? In lieu of some argument for either Macrophysical Test or Laws and Conditions Test from premises that do not beg the question against either the compatibilist or the incompatibilist, the strategy of using chance’s predictive role as a guide to where the chances ends in stalemate.
3. Moving Forward

3.1 Chance’s Role in Probabilistic Explanation

Of the four tests discussed above, which, if any, is correct? Let’s start answering that question by first considering the tests that go by way of chance’s explanatory role.

Whether Good Explanation Test is true depends, of course, on where we draw the line between an ideal explanatory text and no explanation at all, but (as discussed above) I think that there are too many ways for probability ascriptions to feature in merely good explanations without being true or without being about chance to warrant much confidence in Good Explanation Test.

Ideal Explanation Test is motivated by the attractive thought that a probability ascription could not be a non-eliminable part of an ideal explanatory text of an event’s occurrence without also being an accurate description of the event’s chance of occurring. Furthermore, Ideal Explanation Test provides a tractable way into the debate between the compatibilist and the incompatibilist through the somewhat firmer ground of our judgements about the content of ideal scientific explanations. For these reasons, Ideal Explanation Test seems to be a plausible and helpful guide to where the chances are—the chances are wherever the probability ascriptions of ideal scientific explanations say that they are.

It is nowhere near as clear where things stand with the tests that go by way of chance’s predictive role. What we would like is an argument for either Laws and Conditions Test or for Macrophysical Test from premises that do not presuppose a verdict on whether chance and determinism are compatible or on whether there can be macrophysical chances that are independent of microphysical chances. And it is obviously no help to replace both Laws and Conditions Test and Macrophysical Test with a more flexible but less informative
“admissibility” test. Such a strategy simply passes the buck; now the problem is to give some non-question begging argument about when (or whether) the laws and conditions are admissible and when (or whether) only the macrophysical laws and conditions are admissible. Our problem is not a lack of clever ways to define “admissible information” so as to sidestep one argument or another. Instead, our problem is to provide motivation for some such definition without prejudging the question of where the chances are. Both the compatibilist and incompatibilist should acknowledge that chance plays some predictive role and that chance’s predictive role can be a guide to which probability ascriptions accurately describe a world’s chances. If we are to use chance’s predictive role to adjudicate between the compatibilist and incompatibilist, however, we will need an account of chance’s predictive role that does not simply assume either compatibilism or incompatibilism.

To that end, I offer a view of the relationship between chance, explanation, and prediction that provides a framework for motivating Ideal Explanation Test and for deciding between Laws and Conditions Test and Macrophysical Test—all without prejudging the question of where the chances are. Offering a full motivation and defense of the view that I’ll put forward is more than I can do here. Instead, I’ll be content to show that one theoretical advantage of my picture is that, were it correct, it would underwrite a principled way forward in the debate between the compatibilist and incompatibilist.

Traditional accounts of explanation in chancy worlds hold that, when an event occurs by chance, its occurrence is explained by something other than, or something more than, the event’s chance of occurring. For example, on Hempel’s (1965) I-S model, the occurrence of a likely event is explained by probabilistic laws and relevant conditions; on Railton’s (1978) D-N-P model, both likely and unlikely events are explained by the nomological and causal structure of
the world leading up to that event; and many different philosophers, e.g., David Lewis (1986), Paul Humphreys (1989), and James Woodward (2003), have argued that chance occurrences are explained entirely by way of their causes.

I suggest a somewhat different view of explanation in chancey worlds. By my lights, traditional theories of scientific explanation have not adequately distinguished between an explanation of an event’s chance of occurring (e.g., why did the coin have a 50% chance of landing heads?) and an explanation of the occurrence of a chance event (e.g., why did the coin land heads?). While scientific theories provide both kinds of explanations in indeterministic worlds, I suggest that the parts of a scientific theory that explain an event’s chance of occurring are not the same as are the parts of the theory that explain a chance event’s occurrence. 6

On my view, aspects of scientific theorizing that have traditionally been taken to directly explain an event’s occurrence, such as laws, antecedent conditions, or causes, instead directly explain an event’s chance of occurring. For example, the way a coin was tossed, its physical makeup, the relevant laws of nature, etc., directly explain the coin’s chance of landing heads rather than directly explaining the actual outcome of the coin toss. In turn, the complete (i.e., ideal) immediate explanation of an event that occurs by chance consists entirely of that event’s precise chance of occurring. On this view, if a coin’s chance of landing heads really is 50%, there is nothing more to understand about why the coin lands heads than that its chance of landing heads is 50%.

Of course, the relevant laws, antecedent conditions, or causes are not explanatorily irrelevant to the coin’s landing heads (as is, say, my wishing that the coin lands heads). Rather,

6 There is more complexity to my view of chance’s explanatory role, concerning which chance at what time explains an event’s occurrence, but I will not explore that complexity here. For a more thorough discussion, see my manuscript “Chance Explanation”.

21
my view is that the explanatory contribution of laws, antecedent conditions, or causes is always mediated by the outcome’s chance of occurring. In our coin example, the coin landed heads because its chance of landing heads was 50%, and the coin’s chance of landing heads was 50% because of the various laws, prior conditions, or causes that help to determine the coin’s 50% chance of landing heads.7

While my picture of scientific explanation might seem like a radical revision to more traditional accounts, many of its elements are precedented. The idea that an event’s chance of occurring is explained by laws and antecedent conditions is found in Hempel 1965, Kitcher 1989, and Railton 1978. The idea that all events that occur by chance (including unlikely occurrences) are explained (at least in part) by a description of each event’s precise chance of occurring is found in Salmon 1971 and Railton 1978. And, my picture agrees with the very general view that scientific theories allow us to understand our indeterministic world by identifying its nomic ingredients, such as laws, causes, or chances. The primary modification my picture makes to orthodoxy is to recognize an essential division of labor among these explanatory ingredients; the parts of scientific theories that allow us to understand an event’s occurrence are the chances, while other parts of scientific theories (i.e., the laws, conditions, or causes) allow us to understand why those chances obtain.8

7 The distinction between mediate and immediate explanatory information is crucial to this view. In contrast, the view that scientific explanation is transitive functionally collapses this distinction by implying that mediate explanatory information is, ipso facto, immediate explanatory information. In my experience, the alleged transitivity of explanation is typically assumed rather than supported by argument. At any rate, this essay is meant to push back on the transitivity assumption by demonstrating one of the theoretical advantages that comes with preserving the distinction between mediate and immediate explanations of an event’s occurrence.

8 Importantly, my view should be interpreted as a view about the structure of scientific explanation rather than as a view about acceptable answers to why questions. Many philosophers have pointed out that a sentence might be part of an ideal explanation of an event’s occurrence yet not be part of an appropriate answer to a question about why the event occurred.
Elsewhere (“Chance Explanation”) I have argued that one advantage of this picture is that it helps us to understand why there is no better evidence about what the future will be like than the present chances. Abstracting away from some details, my basic idea is that, if the present chances are the ideal explanations of the future while the present laws and conditions help to explain those chances, then it is no wonder that the chances are as good evidence about the future as are the present laws and conditions; the ideal explanation of an event’s occurrence is guaranteed to be at least as good evidence about whether the event occurs as is information that merely helps to explain information already contained in the ideal explanation of the event’s occurrence. In other words, more proximate explanations of an event’s occurrence are at least as good evidence about whether the event occurs as are less proximate explanations, which accounts for the fact that chances are at least as good evidence about the future as are laws, prior conditions, causes, etc.

In the remainder of this essay, I argue that a further advantage of this picture is that it gives us a way to assess the merits of the tests we have discussed without presupposing either compatibilism or incompatibilism.

3.2 Motivating the Tests

First, because my view of indeterministic explanation has it that the only way a probability ascription can be a non-eliminable part (indeed, the only part) of an ideal scientific explanation of an event’s occurrence is by accurately describing the event’s chance of occurring,

in a particular context. (See, for example, Railton 1978, Lewis 1986) For example, it might be true that the presence of oxygen helps to explain a fire even though it is inappropriate to cite the presence of oxygen when answering the question, “Why was there a fire?” across a wide variety of standard contexts. Similarly, it may be that there are many contexts in which the question, “Why did this [chance] event occur?” is appropriately answered by mediate explanatory information about laws, prior conditions or causes, rather than by immediate explanatory information about the event’s chance of occurring.
my view agrees with our previous endorsement of Ideal Explanation Test. So, my view vindicates the attractive thought that a probability ascription could not be a non-eliminable part of an ideal scientific explanation of an event’s occurrence without also being an accurate description of the event’s chance of occurring.

Second, as I explain in more detail below, my view provides a non-question begging route toward picking between Laws and Conditions Test and Macrophysical Test. As we will see, when combined with the assumption that there is only ever one ideal scientific explanation of an event that occurs by chance, my view underwrites an argument for Laws and Conditions Test. However, combined with the contrary assumption that there can be situations in which there is more than one non-competing ideal explanation of an event that occurs by chance and the additional assumption that such non-competing ideal scientific explanations need not be equally good evidence for the event they explain, my view motivates Macrophysical Test. So, one of my view’s theoretical advantages is that it reduces the question of which grounds-for-expectations test is correct to the question of how many ideal explanations there are of an event and whether non-competing ideal scientific explanations are necessarily equally good evidence of the occurrence that each explains. In other words, on my view, the issue of whether there can be chances in worlds in which the laws and present conditions are better evidence about the future than the present chances (e.g., deterministic worlds in which events nevertheless occur by chances) turns on whether there can be more than one ideal explanation of an event’s occurrence and, if so, on whether non-competing ideal explanations of an event’s occurrence must be equally good evidence about whether that event occurs.

To see why my view has such implications about Laws and Conditions Test and Macrophysical Test, let us start by assuming that there is only ever one ideal scientific
explanation of an event’s occurrence. Further suppose that, by chance, a flipped coin lands on heads. On my view, all events that occur by chance have ideal explanations—namely, the chances of those events. Suppose, then, that the present chance of the coin’s landing heads in, say, the next few seconds is the ideal explanation of the coin’s landing heads in the next few seconds. For easier reading, below I leave as implicit the time at which the chance of heads obtains and the time at which the coin lands on heads.

Now, maintain the above assumption that there is only ever one ideal explanation and consider a case in which our coin lands heads by chance in an indeterministic world. On my picture, the laws and present conditions that determine the coin’s chance of landing heads explain the coin’s chance of landing heads but do not immediately explain why the coin lands heads. Since the ideal explanation of an event’s occurrence must be at least as good evidence about whether the event occurs as is information that merely helps to explain the ideal explanation of the event’s occurrence, the coin’s chance of landing heads must be at least as good grounds for our expectations about whether the coin lands heads as are the present laws and conditions that determine the event’s chance of occurring. So, assuming that there is only ever one ideal scientific explanation of an event’s occurrence, my view agrees with Laws and Present Conditions Test about how to locate the chances in indeterministic worlds.

Could there be chances in deterministic worlds? Still maintaining the assumption that there is only one ideal explanation of an event’s occurrence, consider whether our coin could land heads by chance in a deterministic world. Once again, my view is that the laws and present state of the world are explanatorily relevant to a chance event’s future occurrence only by way of explaining the event’s chance of occurring rather than by directly explaining the event’s occurrence. So, in a deterministic world in which there is only one ideal explanation of the
coin’s landing heads—namely, the coin’s chance of landing heads—my view implies that the laws and present state of the world explain the coin’s chance of landing heads. Because the chance of heads is the ideal scientific explanation of the coin’s landing heads and information that helps to explain the ideal scientific explanation of the coin’s landing heads cannot be better evidence about whether the coin lands heads than is the ideal scientific explanation of the coin’s landing heads itself, my view implies that the laws and present state of the world cannot be better evidence about whether the coin lands heads than is the coin’s chance of landing heads. Thus, if the world is deterministic and there is only ever one ideal explanation of an event’s occurrence, then the present chance of heads must be at least as good evidence about whether the coin lands heads as are the deterministic laws and present state of the world—just as Laws and Present Conditions Test implies. And, because the deterministic laws and present state of the world are always better evidence about whether an event occurs than is an event’s non-extremal probability of occurring (since the former but not the latter determines whether the event occurs), it follows that compatibilism is false: there are no (non-extremal) chances in deterministic worlds.

So far, my view of chance’s role in explanation combined with the assumption that there is only ever one ideal scientific explanation of an event vindicates Laws and Conditions Test and incompatibilism (across both indeterministic and deterministic worlds). However, that verdict changes if we suppose that there could be more than one ideal scientific explanation of an event.

On my view, if there is more than one ideal explanation of an event that occurs by chance then that is because there is also more than one chance that explains the event’s occurrence. So, let us imagine that our coin lands heads and that there are two distinct ideal explanations of the coin’s landing heads, which consist in two distinct chances of the coin’s landing heads. (The most natural case in one in which there is a “macrophysical” chance that the coin lands heads as
well as a “microphysical” chance that the coin lands heads.) Notice that incompatibilism is consistent with there being more than one chance that explains an event’s occurrence, so long as those chances are both equal to 1. Similarly, the assumption that there is more than one chance that explains an event’s occurrence is neutral with respect to whether those two chance values are dependent on one another (i.e., is neutral with respect to the question of whether macrophysical chances are autonomous). To avoid begging the question against either the compatibilist or the incompatibilist, I make no assumption about the values of these two different chances: the values might be the same or different, and each value might be maximal or non-maximal.

From here, there are two ways to develop the case. First, suppose that the present macrophysical state of the world and the present macrophysical laws explain one of the chances—call this chance the “macrophysical” chance—and that the present microphysical state of the world and the present microphysical laws explains the other chance—call this second chance the “microphysical” chance. So, we have two separate chains of explanation leading to the coin’s landing heads. Along one chain, the macrophysical conditions and laws explain the coin’s macrophysical chance of landing heads, while the coin’s macrophysical chance of landing heads in turn explains why the coin lands heads. Along the other chain, the microphysical conditions and laws explain the coin’s microphysical chance of landing heads while the coin’s microphysical chance of landing heads explains why the coin lands heads. Because the macrophysical laws and conditions directly explain the macrophysical chance that the coin lands heads but the macrophysical chance that the coin lands heads directly explains the coin’s landing heads, the macrophysical chance must be at least as good evidence about whether the coin lands heads as are the macrophysical laws and conditions. Similarly, because the microphysical laws
and conditions directly explain the microphysical chance that the coin lands heads and the
microphysical chance that the coin lands heads directly explains the coin’s landing heads, the
microphysical chance that the coin lands heads must be at least as good evidence about whether
the coin lands heads as are the microphysical laws and conditions.

The crucial question for the incompatibilist and compatibilist is whether the
macrophysical chance that the coin lands heads must be at least as good evidence about whether
the coin lands heads as are the microphysical laws and conditions. Since we are presently
supposing that the microphysical laws do not explain the macrophysical chance, my view gives
us no motivation for supposing that the macrophysical chance is at least as good evidence as are
the microphysical laws and conditions. The only exception would be if there were some general
reason to suppose that two distinct ideal scientific explanations of an event must be equally good
evidence about whether that event occurs, but I know of no motivation of such a supposition.
So, in this case in which the macrophysical explanatory chain and microphysical explanatory
chain are distinct, my view of scientific explanation (combined with the assumption that distinct
ideal explanations of events need not be equally good evidence about those events) motivates
Macrophysical Test but not Laws and Conditions Test. The macrophysical chance of an event
must be as good evidence about whether the event occurs as are the macrophysical laws and
conditions (since the latter explains the former, while the former explains the event). However,
the macrophysical chance of an event might not be as good evidence about whether the event
occurs as are the microphysical laws and conditions, since the microphysical laws and conditions
lie on a distinct explanatory chain leading up to the event’s occurrence and that distinct
explanatory chain might be even better evidence about whether the coin lands heads than is the
non-competing and ideal macrophysical explanatory chain.
Notice: the above reasoning in support of Macrophysical Test did not presuppose compatibilism. We made no assumptions about the values of the two explanatory chances and so made no assumptions that contradict incompatibilism (e.g., that there is an extremal micro-chance but a non-extremal macro-chance) or that presuppose that there could be macrophysical chances that are independent of microphysical chances (e.g., that the value of the macrophysical chance is unconstrained by the value of the microphysical chance).

We now have only one more case to consider. Continue to allow that there are multiple ideal explanations of an event’s occurrence, but rather than imagining that the chains of explanation are distinct instead imagine that the microphysical conditions and laws help to explain both the microphysical chance that the coin lands heads and the macrophysical chance that the coin lands heads. For example, suppose that coin’s 50% macrophysical chance of landing heads is partly explained by both the macrophysical fact that it is evenly weighted and the microphysical fact that it is in some particular microstate that is consistent with its being evenly weighted.

So far I have been supposing that the ideal scientific explanation of the coin’s landing heads must be at least as good evidence about whether the coin lands heads as is information that merely helps to explain the ideal explanation of the coin’s landing heads. It might seem, then, that the macrophysical chance of the coin’s landing heads must be at least as good evidence about whether the coin lands heads as are the microphysical laws and conditions in any situation in which the microphysical laws and conditions help to explain the coin’s macrophysical chance of landing heads.

However, in the present case we not only have two ideal scientific explanations of the coin’s landing heads but we are also supposing that the microphysical laws and conditions help
to explain both of these ideal explanations of the coin’s landing heads. While I maintain that an ideal explanation of an event’s occurrence is guaranteed to be at least as good evidence about whether the event occurs as is information that merely explains that ideal explanation, information that additionally helps to explain a second distinct ideal explanation of the event’s occurrence might well be better evidence about whether the event occurs than is any single ideal explanation of that event’s occurrence.

To see why, recall that (as far as I know) there is no general reason to suppose that two distinct ideal explanations of an event’s occurrence must be equally good evidence about whether that event occurs. So, two ideal scientific explanations of an event’s occurrence taken together might be better evidence about whether that event occurs than is either ideal explanation on its own. Similarly, information that helps to explain both ideal scientific explanations (e.g., microphysical facts about the coin that help to explain both its macrophysical chance and microphysical chance of landing heads) might be better evidence about whether the coin lands heads than is either ideal scientific explanation on its own. In this case, since the microphysical laws and conditions are evidentially relevant to whether the coin lands heads in virtue of helping to explain both the macrophysical and microphysical chance of the coin’s landing heads, then the microphysical laws and conditions might be better evidence about whether the coin lands heads than is either ideal explanations of the coin’s landing heads on its own.

According to my view, then, the macrophysical chance that the coin lands heads need not be better evidence about whether the coin lands heads than are the microphysical laws and conditions even if the microphysical laws and conditions help to explain the macrophysical chance that the coin lands heads, because the microphysical laws and conditions also help to explain the microphysical chance that the coin lands heads. Here again, then, my view motivates
Macrophysical Test and not Laws and Conditions Test; the macrophysical chance of an event is as good evidence about whether the event occurs as are the macrophysical laws and conditions, but the macrophysical chance of an event might not be as good evidence about whether the event occurs as are the microphysical laws and conditions.

In summary, my view of chance’s role in scientific explanation give us a principled way of adjudicating between Laws and Conditions Test and Macrophysical Test. If we decide that there is only ever one ideal scientific explanation of an event, my view underwrites Laws and Conditions Test and also incompatibilism. However, if we think that there could be more than one ideal scientific explanation of an event and if we also think that non-competing ideal scientific explanations need not be equally good grounds for our expectations about the event that they explain, then my view motivations Macrophysical Test but not Laws and Conditions Test. Thus, my view of chance’s role in scientific explanation underwrites reasons for choosing between Laws and Conditions Test and Macrophysical Test that do not beg the question against either the compatibilist or incompatibilist.

Furthermore, it seems to me that my view yields an intuitive way of deciding between Laws and Conditions Test and Macrophysical Test. It seems fitting that whether compatibilism or incompatibilism is true should ultimately turn on whether there can be ideal explanations in deterministic worlds that are distinct from the ideal explanations provided by the deterministic laws and conditions of that world—just as my view implies.

4. Conclusion

This essay began with the observation that there are two different strategies for
determining where the chances are, i.e., for determining whether the probabilities that appear in scientific theories that describe a world also accurately describe the chances in that world: locate the chances in a world by finding the explanations in that world, or locate the chances in a world by finding the best grounds for our expectations about the future of that world. These two strategies have been used to deliver conflicting results about whether there can be chances in deterministic worlds and about whether there can be worlds in which macrophysical chances are independent of microphysical chances. Moreover, using the second of these strategies turns out to be complicated by the fact that there are two plausible but competing ways to apply that strategy—Laws and Conditions Test and Macrophysical Test—and knowing which way is correct seems to require already knowing where the chances are.

To help us to make progress, I offered my view of chance’s role in scientific explanation and I argued that my view provides a way to adjudicate between Laws and Conditions Test and Macrophysical Test without prejudging questions about where the chances are. If there can only be one ideal scientific explanation of an event, or if multiple ideal scientific explanations of an event must be equally good evidence about whether the event occurs, then my view gives us reason to believe Laws and Conditions Test and incompatibilism. If instead, however, there can be multiple ideal scientific explanations of an event that are not all equally good evidence for that event, my view motivates Macrophysical Test and compatibilism.

On my view, then, the correct explanation-based strategy for figuring out where the chances are turns out to not be so different after all from the correct grounds-for-expectation strategy for figuring out where the chances are; both strategies yield results about chance that are sensitive to further claims about what the ideal scientific explanations are and about what ideal
scientific explanations are like. Where are the chances, then? They are exactly where the ideal probabilistic explanations say they are, wherever that might be.
Bibliography

